Quick Answer: Intel Arc B570 offers 10GB VRAM and starts around current market pricing. It delivers approximately 77 tokens/sec on Qwen/Qwen3-ASR-1.7B. It typically draws 150W under load.
This GPU offers reliable throughput for local AI workloads. Pair it with the right model quantization to hit your desired tokens/sec, and monitor prices below to catch the best deal.
Buy directly on Amazon with fast shipping and reliable customer service.
Essential accessories to pair with Intel Arc B570
💡 Not ready to buy? Try cloud GPUs first
Test Intel Arc B570 performance in the cloud before investing in hardware. Pay by the hour with no commitment.
| Model | Quantization | Tokens/sec | VRAM used |
|---|---|---|---|
| Qwen/Qwen3-ASR-1.7B | Q4 | 76.93 tok/sEstimated Auto-generated benchmark | 2GB |
| deepseek-ai/DeepSeek-OCR-2 | Q4 | 69.95 tok/sEstimated Auto-generated benchmark | 2GB |
| moonshotai/Kimi-K2.5 | Q4 | 58.76 tok/sEstimated Auto-generated benchmark | 4GB |
| zai-org/GLM-OCR | Q4 | 58.23 tok/sEstimated Auto-generated benchmark | 4GB |
| deepseek-ai/DeepSeek-OCR-2 | Q8 | 57.08 tok/sEstimated Auto-generated benchmark | 4GB |
| nvidia/personaplex-7b-v1 | Q4 | 56.67 tok/sEstimated Auto-generated benchmark | 4GB |
| Qwen/Qwen3-ASR-1.7B | Q8 | 52.89 tok/sEstimated Auto-generated benchmark | 3GB |
| moonshotai/Kimi-K2.5 | Q8 | 46.76 tok/sEstimated Auto-generated benchmark | 8GB |
| zai-org/GLM-OCR | Q8 | 43.54 tok/sEstimated Auto-generated benchmark | 8GB |
| nvidia/personaplex-7b-v1 | Q8 | 42.33 tok/sEstimated Auto-generated benchmark | 8GB |
| Qwen/Qwen3-ASR-1.7B | FP16 | 28.35 tok/sEstimated Auto-generated benchmark | 6GB |
| deepseek-ai/DeepSeek-OCR-2 | FP16 | 27.66 tok/sEstimated Auto-generated benchmark | 8GB |
| zai-org/GLM-OCR | FP16 | 23.96 tok/sEstimated Auto-generated benchmark | 16GB |
| zai-org/GLM-4.7-Flash | Q4 | 23.08 tok/sEstimated Auto-generated benchmark | 18GB |
| moonshotai/Kimi-K2.5 | FP16 | 22.35 tok/sEstimated Auto-generated benchmark | 16GB |
| nvidia/personaplex-7b-v1 | FP16 | 22.15 tok/sEstimated Auto-generated benchmark | 16GB |
| zai-org/GLM-4.7-Flash | Q8 | 15.07 tok/sEstimated Auto-generated benchmark | 35GB |
| Qwen/Qwen3-Coder-Next | Q4 | 12.38 tok/sEstimated Auto-generated benchmark | 45GB |
| zai-org/GLM-4.7-Flash | FP16 | 8.51 tok/sEstimated Auto-generated benchmark | 70GB |
| Qwen/Qwen3-Coder-Next | Q8 | 7.89 tok/sEstimated Auto-generated benchmark | 90GB |
| stepfun-ai/Step-3.5-Flash | Q4 | 6.93 tok/sEstimated Auto-generated benchmark | 112GB |
| stepfun-ai/Step-3.5-Flash | Q8 | 5.29 tok/sEstimated Auto-generated benchmark | 223GB |
| Qwen/Qwen3-Coder-Next | FP16 | 4.47 tok/sEstimated Auto-generated benchmark | 179GB |
| stepfun-ai/Step-3.5-Flash | FP16 | 2.95 tok/sEstimated Auto-generated benchmark | 446GB |
Note: Performance estimates are calculated. Real results may vary. Methodology · Submit real data
| Model | Quantization | Verdict | Estimated speed | VRAM needed |
|---|---|---|---|---|
| nvidia/personaplex-7b-v1 | Q4 | Fits comfortably | 56.67 tok/sEstimated | 4GB (have 10GB) |
| moonshotai/Kimi-K2.5 | Q4 | Fits comfortably | 58.76 tok/sEstimated | 4GB (have 10GB) |
| Qwen/Qwen3-Coder-Next | Q4 | Not supported | 12.38 tok/sEstimated | 45GB (have 10GB) |
| Qwen/Qwen3-ASR-1.7B | Q4 | Fits comfortably | 76.93 tok/sEstimated | 2GB (have 10GB) |
| stepfun-ai/Step-3.5-Flash | Q4 | Not supported | 6.93 tok/sEstimated | 112GB (have 10GB) |
| deepseek-ai/DeepSeek-OCR-2 | Q4 | Fits comfortably | 69.95 tok/sEstimated | 2GB (have 10GB) |
| zai-org/GLM-4.7-Flash | Q4 | Not supported | 23.08 tok/sEstimated | 18GB (have 10GB) |
| zai-org/GLM-OCR | Q4 | Fits comfortably | 58.23 tok/sEstimated | 4GB (have 10GB) |
| nvidia/personaplex-7b-v1 | Q8 | Fits comfortably | 42.33 tok/sEstimated | 8GB (have 10GB) |
| moonshotai/Kimi-K2.5 | Q8 | Fits comfortably | 46.76 tok/sEstimated | 8GB (have 10GB) |
| Qwen/Qwen3-Coder-Next | Q8 | Not supported | 7.89 tok/sEstimated | 90GB (have 10GB) |
| Qwen/Qwen3-ASR-1.7B | Q8 | Fits comfortably | 52.89 tok/sEstimated | 3GB (have 10GB) |
| stepfun-ai/Step-3.5-Flash | Q8 | Not supported | 5.29 tok/sEstimated | 223GB (have 10GB) |
| deepseek-ai/DeepSeek-OCR-2 | Q8 | Fits comfortably | 57.08 tok/sEstimated | 4GB (have 10GB) |
| zai-org/GLM-4.7-Flash | Q8 | Not supported | 15.07 tok/sEstimated | 35GB (have 10GB) |
| zai-org/GLM-OCR | Q8 | Fits comfortably | 43.54 tok/sEstimated | 8GB (have 10GB) |
| nvidia/personaplex-7b-v1 | FP16 | Not supported | 22.15 tok/sEstimated | 16GB (have 10GB) |
| moonshotai/Kimi-K2.5 | FP16 | Not supported | 22.35 tok/sEstimated | 16GB (have 10GB) |
| Qwen/Qwen3-Coder-Next | FP16 | Not supported | 4.47 tok/sEstimated | 179GB (have 10GB) |
| Qwen/Qwen3-ASR-1.7B | FP16 | Fits comfortably | 28.35 tok/sEstimated | 6GB (have 10GB) |
| stepfun-ai/Step-3.5-Flash | FP16 | Not supported | 2.95 tok/sEstimated | 446GB (have 10GB) |
| deepseek-ai/DeepSeek-OCR-2 | FP16 | Fits comfortably | 27.66 tok/sEstimated | 8GB (have 10GB) |
| zai-org/GLM-4.7-Flash | FP16 | Not supported | 8.51 tok/sEstimated | 70GB (have 10GB) |
| zai-org/GLM-OCR | FP16 | Not supported | 23.96 tok/sEstimated | 16GB (have 10GB) |
Note: Performance estimates are calculated. Real results may vary. Methodology · Submit real data
Explore how RTX 5070 stacks up for local inference workloads.
Explore how RTX 4060 Ti 16GB stacks up for local inference workloads.
Explore how RX 6800 XT stacks up for local inference workloads.
Explore how RTX 4070 Super stacks up for local inference workloads.
Explore how RTX 3080 stacks up for local inference workloads.
RPG • 2020
RPG • 2023
RPG • 2023
Action RPG • 2022
Action Adventure • 2019
Action Adventure • 2015
RPG • 2015
Racing • 2021
Action Adventure • 2023
Action RPG • 2020
Action RPG • 2024
Action RPG • 2023