L
localai.computer
ModelsGPUsSystemsAI SetupsBuildsOpenClawMethodology

Resources

  • Methodology
  • Submit Benchmark
  • About

Browse

  • AI Models
  • GPUs
  • PC Builds

Guides

  • OpenClaw Guide
  • How-To Guides

Legal

  • Privacy
  • Terms
  • Contact

© 2025 localai.computer. Hardware recommendations for running AI models locally.

ℹ️We earn from qualifying purchases through affiliate links at no extra cost to you. This supports our free content and research.

Can NVIDIA H200 SXM 141GB run Qwen/Qwen3-Next-80B-A3B-Thinking-FP8?

Runs Q4141GB VRAM availableRequires 39GB+

NVIDIA H200 SXM 141GB meets the minimum VRAM requirement for Q4 inference of Qwen/Qwen3-Next-80B-A3B-Thinking-FP8. Review the quantization breakdown below to see how higher precision settings impact VRAM and throughput.

What this means for you

NVIDIA H200 SXM 141GB can run Qwen/Qwen3-Next-80B-A3B-Thinking-FP8 with Q4 quantization. At approximately 150 tokens/second, you can expect Excellent speed - conversational response times under 1 second.

You have 102GB headroom, which is sufficient for system overhead and smooth operation.

Quantization breakdown

QuantizationVRAM neededVRAM availableEstimated speedVerdict
Q439GB141GB150.35 tok/s✅ Fits comfortably
Q878GB141GB94.32 tok/s✅ Fits comfortably
FP16156GB141GB57.33 tok/s❌ Not recommended

Suitable alternatives

AMD Instinct MI300X
192GB
144.02 tok/s
Price: —
AMD Instinct MI300X
192GB
107.71 tok/s
Price: —
NVIDIA H100 SXM5 80GB
80GB
105.75 tok/s
Price: —
AMD Instinct MI250X
128GB
86.21 tok/s
Price: —
AMD Instinct MI250X
128GB
67.82 tok/s
Price: —

More questions

NVIDIA H200 SXM 141GB specs & pricingFull guide for Qwen/Qwen3-Next-80B-A3B-Thinking-FP8Qwen/Qwen3-Next-80B-A3B-Thinking-FP8 speed on NVIDIA H200 SXM 141GBQwen/Qwen3-Next-80B-A3B-Thinking-FP8 Q4 requirements