L
localai.computer
ModelsGPUsSystemsAI SetupsBuildsOpenClawMethodology

Resources

  • Methodology
  • Submit Benchmark
  • About

Browse

  • AI Models
  • GPUs
  • PC Builds

Guides

  • OpenClaw Guide
  • How-To Guides

Legal

  • Privacy
  • Terms
  • Contact

© 2025 localai.computer. Hardware recommendations for running AI models locally.

ℹ️We earn from qualifying purchases through affiliate links at no extra cost to you. This supports our free content and research.

Can NVIDIA H100 SXM5 80GB run Qwen/Qwen2.5-Coder-32B-Instruct?

Runs Q480GB VRAM availableRequires 17GB+

NVIDIA H100 SXM5 80GB meets the minimum VRAM requirement for Q4 inference of Qwen/Qwen2.5-Coder-32B-Instruct. Review the quantization breakdown below to see how higher precision settings impact VRAM and throughput.

What this means for you

NVIDIA H100 SXM5 80GB can run Qwen/Qwen2.5-Coder-32B-Instruct with Q4 quantization. At approximately 172 tokens/second, you can expect Excellent speed - conversational response times under 1 second.

You have 63GB headroom, which is sufficient for system overhead and smooth operation.

Quantization breakdown

QuantizationVRAM neededVRAM availableEstimated speedVerdict
Q417GB80GB172.32 tok/s✅ Fits comfortably
Q834GB80GB128.24 tok/s✅ Fits comfortably
FP1667GB80GB65.96 tok/s✅ Fits comfortably

Suitable alternatives

AMD Instinct MI300X
192GB
281.52 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
220.08 tok/s
Price: —
AMD Instinct MI300X
192GB
200.90 tok/s
Price: —
AMD Instinct MI250X
128GB
169.94 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
161.98 tok/s
Price: —

More questions

NVIDIA H100 SXM5 80GB specs & pricingFull guide for Qwen/Qwen2.5-Coder-32B-InstructQwen/Qwen2.5-Coder-32B-Instruct speed on NVIDIA H100 SXM5 80GBQwen/Qwen2.5-Coder-32B-Instruct Q4 requirements