L
localai.computer
ModelsGPUsSystemsAI SetupsBuildsOpenClawMethodology

Resources

  • Methodology
  • Submit Benchmark
  • About

Browse

  • AI Models
  • GPUs
  • PC Builds

Guides

  • OpenClaw Guide
  • How-To Guides

Legal

  • Privacy
  • Terms
  • Contact

© 2025 localai.computer. Hardware recommendations for running AI models locally.

ℹ️We earn from qualifying purchases through affiliate links at no extra cost to you. This supports our free content and research.

Can NVIDIA A100 80GB SXM4 run zai-org/GLM-4.6-FP8?

Runs Q480GB VRAM availableRequires 4GB+

NVIDIA A100 80GB SXM4 meets the minimum VRAM requirement for Q4 inference of zai-org/GLM-4.6-FP8. Review the quantization breakdown below to see how higher precision settings impact VRAM and throughput.

What this means for you

NVIDIA A100 80GB SXM4 can run zai-org/GLM-4.6-FP8 with Q4 quantization. At approximately 272 tokens/second, you can expect Excellent speed - conversational response times under 1 second.

You have 76GB headroom, which is sufficient for system overhead and smooth operation.

Quantization breakdown

QuantizationVRAM neededVRAM availableEstimated speedVerdict
Q44GB80GB271.82 tok/s✅ Fits comfortably
Q87GB80GB204.20 tok/s✅ Fits comfortably
FP1615GB80GB118.20 tok/s✅ Fits comfortably

Suitable alternatives

AMD Instinct MI300X
192GB
708.33 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
641.07 tok/s
Price: —
AMD Instinct MI300X
192GB
483.70 tok/s
Price: —
AMD Instinct MI250X
128GB
481.42 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
463.95 tok/s
Price: —

More questions

NVIDIA A100 80GB SXM4 specs & pricingFull guide for zai-org/GLM-4.6-FP8zai-org/GLM-4.6-FP8 speed on NVIDIA A100 80GB SXM4zai-org/GLM-4.6-FP8 Q4 requirements