L
localai.computer
ModelsGPUsSystemsAI SetupsBuildsOpenClawMethodology

Resources

  • Methodology
  • Submit Benchmark
  • About

Browse

  • AI Models
  • GPUs
  • PC Builds

Guides

  • OpenClaw Guide
  • How-To Guides

Legal

  • Privacy
  • Terms
  • Contact

© 2025 localai.computer. Hardware recommendations for running AI models locally.

ℹ️We earn from qualifying purchases through affiliate links at no extra cost to you. This supports our free content and research.

Can NVIDIA A100 80GB SXM4 run trl-internal-testing/tiny-random-LlamaForCausalLM?

Runs Q480GB VRAM availableRequires 4GB+

NVIDIA A100 80GB SXM4 meets the minimum VRAM requirement for Q4 inference of trl-internal-testing/tiny-random-LlamaForCausalLM. Review the quantization breakdown below to see how higher precision settings impact VRAM and throughput.

What this means for you

NVIDIA A100 80GB SXM4 can run trl-internal-testing/tiny-random-LlamaForCausalLM with Q4 quantization. At approximately 266 tokens/second, you can expect Excellent speed - conversational response times under 1 second.

You have 76GB headroom, which is sufficient for system overhead and smooth operation.

Quantization breakdown

QuantizationVRAM neededVRAM availableEstimated speedVerdict
Q44GB80GB265.82 tok/s✅ Fits comfortably
Q87GB80GB222.84 tok/s✅ Fits comfortably
FP1615GB80GB119.38 tok/s✅ Fits comfortably

Suitable alternatives

NVIDIA H200 SXM 141GB
141GB
730.00 tok/s
Price: —
AMD Instinct MI300X
192GB
712.85 tok/s
Price: —
AMD Instinct MI250X
128GB
523.49 tok/s
Price: —
AMD Instinct MI300X
192GB
483.32 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
473.91 tok/s
Price: —

More questions

NVIDIA A100 80GB SXM4 specs & pricingFull guide for trl-internal-testing/tiny-random-LlamaForCausalLMtrl-internal-testing/tiny-random-LlamaForCausalLM speed on NVIDIA A100 80GB SXM4trl-internal-testing/tiny-random-LlamaForCausalLM Q4 requirements