L
localai.computer
ModelsGPUsSystemsAI SetupsBuildsOpenClawMethodology

Resources

  • Methodology
  • Submit Benchmark
  • About

Browse

  • AI Models
  • GPUs
  • PC Builds

Guides

  • OpenClaw Guide
  • How-To Guides

Legal

  • Privacy
  • Terms
  • Contact

© 2025 localai.computer. Hardware recommendations for running AI models locally.

ℹ️We earn from qualifying purchases through affiliate links at no extra cost to you. This supports our free content and research.

Can Apple M2 Max run unsloth/Llama-3.2-3B-Instruct?

Runs Q496GB VRAM availableRequires 2GB+

Apple M2 Max meets the minimum VRAM requirement for Q4 inference of unsloth/Llama-3.2-3B-Instruct. Review the quantization breakdown below to see how higher precision settings impact VRAM and throughput.

What this means for you

Apple M2 Max can run unsloth/Llama-3.2-3B-Instruct with Q4 quantization. At approximately 67 tokens/second, you can expect Good speed - acceptable for interactive use.

You have 94GB headroom, which is sufficient for system overhead and smooth operation.

Quantization breakdown

QuantizationVRAM neededVRAM availableEstimated speedVerdict
Q42GB96GB66.68 tok/s✅ Fits comfortably
Q83GB96GB43.70 tok/s✅ Fits comfortably
FP166GB96GB22.56 tok/s✅ Fits comfortably

Suitable alternatives

NVIDIA H200 SXM 141GB
141GB
907.20 tok/s
Price: —
AMD Instinct MI300X
192GB
855.71 tok/s
Price: —
NVIDIA H100 SXM5 80GB
80GB
608.87 tok/s
Price: —
AMD Instinct MI300X
192GB
590.06 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
579.84 tok/s
Price: —

More questions

Apple M2 Max specs & pricingFull guide for unsloth/Llama-3.2-3B-Instructunsloth/Llama-3.2-3B-Instruct speed on Apple M2 Maxunsloth/Llama-3.2-3B-Instruct Q4 requirements